Selenorhodamine Photosensitizers for Photodynamic Therapy of P-Glycoprotein-Expressing Cancer Cells
نویسندگان
چکیده
We examined a series of selenorhodamines with amide and thioamide functionality at the 5-position of a 9-(2-thienyl) substituent on the selenorhodamine core for their potential as photosensitizers for photodynamic therapy (PDT) in P-glycoprotein (P-gp) expressing cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their uptake into Colo-26 cells in the absence or presence of verapamil, for their dark and phototoxicity toward Colo-26 cells, for their rates of transport in monolayers of multidrug-resistant, P-gp-overexpressing MDCKII-MDR1 cells, and for their colocalization with mitochondrial specific agents in Colo-26 cells. Thioamide derivatives 16b and 18b were more effective photosensitizers than amide derivatives 15b and 17b. Selenorhodamine thioamides 16b and 18b were useful in a combination therapy to treat Colo-26 cells in vitro: a synergistic therapeutic effect was observed when Colo-26 cells were exposed to PDT and treatment with the cancer drug doxorubicin.
منابع مشابه
بررسی اثر فتودینامیکی کمپلکس تتراپیریدینو پورفیرازین روی (II)، بر ردهی سلولی HeLa
Background and Objective: Photodynamic therapy is a treatment that uses photosensitizer and intense visible light. When photosensitizers get exposed to a specific light wavelength (preferentially in the red region), they produce reactive oxygen species that are toxic to cells. Recently, attention has been focused on porphyrins and their analogs as photosensitizers. Zn (II) tetrapyridinoporphyra...
متن کاملCytosolic superoxide dismutase activity after photodynamic therapy, intracellular distribution of Photofrin II and hypericin, and P-glycoprotein localization in human colon adenocarcinoma.
In photodynamic therapy (PDT), a tumor-selective photosensitizer is administered and then activated by exposure to a light source of applicable wavelength. Multidrug resistance (MDR) is largely caused by the efflux of therapeutics from the tumor cell by means of P-glycoprotein (P-gp), resulting in reduced efficacy of the anticancer therapy. This study deals with photodynamic therapy with Photof...
متن کاملNanotechnology; its significance in cancer and photodynamic therapy
In the last decade, developments in nanotechnology have provided a new field in medicine called “Nanomedicine”. Nanomedicine has provided new tools for photodynamic therapy. Quantum dots (QDs) are approximately spherical nanoparticles that have attracted broad attention and have been used in nanomedicine applications. QDs have high molar extinction coefficients and photoluminescence quantum yie...
متن کاملNanodrug applications in photodynamic therapy.
Photodynamic therapy (PDT) has developed over last century and is now becoming a more widely used medical tool having gained regulatory approval for the treatment of various diseases such as cancer and macular degeneration. It is a two-step technique in which the delivery of a photosensitizing drug is followed by the irradiation of light. Activated photosensitizers transfer energy to molecular ...
متن کاملNanoparticle Platforms for Combined Photothermal and Photodynamic Therapy
Phototherapy is a promising strategy for cancer treatment due to its selective and localized therapeutic effect by laser irradiation. Photothermal therapy damages malignant cells by using heat converted from light by an agent. On the other hand, photodynamic therapy uses photosensitizers that become cytotoxic upon irradiation with laser light at excitation wavelength. As singular treatment of e...
متن کامل